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ABSTRACT 

Polychlorinated biphenyl compounds (PCBs), chlorinated pesticides and mercury (Hg) are global 

environmental contaminants that can disrupt the endocrine system in animals and humans. 

However, there is little evidence that they can interfere with endocrine status in pregnant women 

and neonates at low levels of exposure. The aim of this study was to examine thyroid hormone 

levels in pregnancy and in cord blood in relation to blood concentrations of organochlorine 

compounds (OCs) and Hg in healthy women recruited during pregnancy. There was a significant 

negative correlation between maternal total triiodothyronine (TT3) levels and three non coplanar 

congeners (CB-138, CB-153 and CB-180), two pesticides (p,p’-DDE and hexa-chlorobenzene), 

and inorganic Hg independently, without any other changes in thyroid status. No significant 

relationships were observed between OCs and cord serum thyroid hormones. Cord serum free 

thyroxin (fT4) was negatively correlated to inorganic Hg. These results suggest that even low 

levels of exposure, persistent environmental contaminants can interfere with thyroid status during 

pregnancy. 
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INTRODUCTION 

Adequate thyroid functioning during pregnancy is a known determinant of healthy pregnancy 

outcomes and successful brain development in the fetus (LaFranchi et al. 2005). Recent 

epidemiological studies have focused on sub-clinical maternal thyroid deficiency during 

pregnancy, particularly for hypothyroxinemia in early gestation, and its long term effects on 

psychomotor development of child (Pop et al. 2003). These effects could be mediated by 

impaired glucose metabolism in fetal brain during the critical period of neuroblast proliferation 

(Pickard et al. 1999). In addition, the trophoblast has a high binding capacity for T3 and it has 

been suggested that the placenta is a thyroid hormone dependent tissue (Kilby et al. 1998; Oki et 

al. 2004). 

 

Experimental studies have shown that polychlorinated biphenyls (PCBs) and related chemicals 

decrease circulating TH during development (Donahue et al. 2004; Ulbrich et al. 2004; Zoeller et 

al. 2000). Pre- or postnatal exposition of humans or animals to PCBs can result in hormonal 

changes and neurodevelopmental deficits (Jacobson and Jacobson 2002, 2003; Vreugdenhil et al. 

2002b; Vreugdenhil et al. 2002a; Vreugdenhil et al. 2004). In rats, Goldey et al. (1995) reported 

that ototoxic effects of PCBs were associated with decreased circulating TH following perinatal 

exposure (Goldey et al. 1995). And, it has been suggested that interference with endocrine 

systems, particularly the thyroid, could be one possible explanation for PCB-induced 

psychomotor delay observed in several cohort studies (Winneke et al. 2002). 

 

Two classes of PCB metabolites are formed from PCB biotransformation: hydroxylated (HO-

PCBs) and methyl sulfone PCBs. No data are available about human exposure to methyl sulfone 
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PCBs or their effects on thyroid status in experimental animals. However, most PCB congeners 

and hydroxylated PCBs, which disrupt thyroid hormone status, are transferred across the placenta 

to the fetus in concentrations resulting in levels of approximately 50 and 30%, respectively, of 

those in maternal plasma (Soechitram et al. 2004). Hydroxylated PCBs show high binding 

affinity for the serum thyroid hormone binding protein transthyretin, thus displacing the natural 

ligand, T4 (Cheek et al. 1999). PCBs as well as some other OCs such as hexa-chlorobenzene, are 

also known to increase the activity of hepatic drug-metabolizing enzymes, in particular UDP-

glucuronosyltransferase, responsible for glucuronidation of T4 (Van Birgelen et al., 1995; van 

Raaij et al., 1993). In vitro, hydroxylated PCBs have low affinity for the human thyroid receptor, 

but do have a thyroid hormone-like affinity for the serum transport protein transthyretin (Cheek 

et al. 1999; Meerts et al. 2002) and inhibit the iodothyronine sulfotransferase activity (Schuur et 

al. 1998). 

 

Chlorine substitution in the phenyl rings gives each PCB its own target and mechanism of 

toxicity. “Coplanarity” of PCB phenyl rings and “laterality” of chlorine atoms are important 

structural features that determine specific binding behavior with proteins and certain adverse 

responses in biological systems. There is evidence that coplanar PCB mutagenic toxicity is 

mediated through the Ah receptor (Safe 1994). Recently, it was reported that both, mono-ortho 

and non-coplanar types of PCB, and hydroxylated PCB metabolites may disrupt thyroid hormone 

status, in part, by affecting TR-mediated transcription, which may influence growth and 

development of TH target organs, particularly in the CNS (Iwasaki et al. 2002). Khan and Hansen 

(2003) suggest that non coplanar congeners interfere with the HPT-axis by producing a 

subnormal response of the pituitary and thyroid to TRH stimulation. 
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The developing fetus is particularly susceptible to thyrotoxic effects of PCBs and their 

metabolites. In rats, exposure to hydroxylated PCB 4’-HO-CB108 from gestational days (GD) 10 

to 16 decreased maternal, fœtal and neonatal plasma total T4 and free T4 in a dose dependant 

manner (Meerts et al. 2002). Chronic developmental exposure to Arochlor 1254 from GD6 to 

postpartum day 21 also reduces circulating levels of total T4 (Zoeller et al. 2000). At the same 

conditions of exposure, Goldey et al. (1995) observed decreased total T4 levels and a moderate 

reduction of T3 levels in offspring at high doses of exposure. 

 

Other environmental pollutants, such as pesticides and mercury, may also disrupt thyroid 

function (Beard and Rawlings 1999; Ellingsen et al. 2000; Rathore et al. 2002; Watanabe et al. 

1999). Long term workplace exposure to Hg interferes with thyroid metabolism by reducing of 

T4 deiodination (Ellingsen et al. 2000). In a community highly exposed to hexachlorobenzene, a 

significant positive association was found between this OC and TSH concentrations at birth 

(Ribas-Fito et al. 2003). 

 

The general population is exposed to multiple environmental contaminants at relatively low 

doses, but few studies have reported thyroid status in pregnancy in relation to mixtures of 

environmental organic pollutants. Moreover, most studies report the sum of PCBs as an exposure 

measure, which can mask the specific effect of different groups of congeners with different 

mechanism of action. Thus, the objective of the present study was to examine the relation 

between exposure to potential endocrine disrupting chemicals (coplanar and non-coplanar PCBs, 

organochloride pesticide residues, and Hg) and thyroid status in pregnant women and the 

newborn.  
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METHOD 

Study Population 

The women participating in the study were recruited at first prenatal visit at the Centre for Local 

Community Services (part of the National Public Health System) in Southwest Québec. After 

signing a consent form, an interview administered questionnaire, which contained general socio-

demographic data and information on residency, medical history, drinking and smoking habits 

and diet, was filled out and blood samples were obtained. Those who were recruited into the 

study during the 1st trimester (prior to the 13th week) provided a first sample at entry and a second 

during the 2nd trimester, while those who were recruited between the 14th and 24th week provided 

one sample prior to delivery. The first trimester sampling was performed before the first 

ultrasound examination. The gestational age at sampling was revised according to ultrasound data 

for 22 women, who provided two samples at second trimester. The study population was 

composed of 149 pregnant women, 101 of those gave birth at the participating hospital where 

mother’s and cord blood samples and placental tissue were obtained at delivery. Two weeks 

following birth, a 2nd questionnaire was interview- administered. This second questionnaire 

included information on medical and obstetrical history, birth data, as well as smoking and 

drinking during pregnancy. 

 

After verification, only 40 women had entered the study during the first 13 weeks of pregnancy 

and 109 entered at the 2nd semester. Thus, most data was available for the 2nd semester (n =149). 

At delivery, there were 101 mother’s and 92 cord blood samples available for analyses. Thus, 

complete data throughout pregnancy were available for 38 women and for 101 from the 2nd 
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trimester and at delivery. Data for hormones and contaminants are missing for some women 

(n=2-4) due to insufficient quantity of blood or non respect of specimen storage protocol. 

 

Biological sampling 

Blood samples for the first and the second trimesters were collected at the pregnant women’s 

residence after night fasting while the third trimester sample and cord blood sample were taken at 

the hospital at delivery. Whole blood and serum samples were refrigerated at -20oC until 

contaminant and hormone determination (3-4 months). 

 

PCBs, pesticides and Hg determination 

Laboratory analyses of PCB and chlorinated pesticides were performed by the Centre of 

Toxicology of Quebec by gas chromatography coupled with mass detection (GC-MS) using 

Chromatograph 6890 and mass detector 5973 from Agilent. Two milliliters of blood plasma were 

extracted using an ammonium sulfate/ethanol/hexane mixture, cleaned-up on Florisil columns, 

and taken to a final volume of 100 µL. Routine checks of accuracy and precision were performed 

using reference materials from National Institute of Standards and Technology. Also, periodic 

evaluations were carried out through participation in two external proficiency testing programs 

(Artic Monitoring Assessment Program Ring test (Laboratoire de toxicologie humaine / INSPQ) 

and German Society of Occupational and Environmental Medicine,Erlangen, Germany). The 

detection limits were 0.02 µg/L for PCB congeners and chlorinated pesticides. 

 

Cold Vapor Atomic Absorption Spectrometry was used to assess total Hg (THg) and inorganic 

Hg (IHg) using Pharmacia Instruments Mercury Monitor Model 100. Organic mercury (OHg) 
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was calculated as the difference between THg and IHg. Total Hg was determined using 500 µL of 

blood, digested with an equal volume of concentrated nitric acid. An aliquot of the digest was 

then introduced in the system’s reaction chamber (containing a reducing solution of cadmium 

chloride and stannous chloride). Mercury vapor was generated and detected, and aqueous 

calibration was performed. The inorganic mercury fraction was determined using the same 

methodology except for the use of cadmium chloride, as part of the reactant mixture, which was 

omitted. Routine checks of accuracy and precision were performed using reference material from 

the Laboratoire de toxicology / INSPQ’s interlaboratory comparison program. In addition, 

periodic evaluations were carried out through participation in the same program. The detection 

limit obtained was 2 nmol/L (0.2 µg/L). Variation coefficients (N~20, different days) at levels of 

38 IHg and 82 OHg nmol/L were 4 % and 3.4 % respectively. 

 

The detection limits were determined from the analyses of 10 actual samples, whose 

concentrations were between 4 to 10 times the estimated detection limit. The standard deviation 

of these 10 samples multiplied by 3 provided the detection limit, which was multiplied by 10 to 

provide the quantification limit. 

 

Lipid determination 

Total and free cholesterol (TC and FC), triglycerides (TG) and phospholipids (PL) were 

individually measured using enzymatic methods on the Tecnicon automatic analyzer (RA-500) as 

previously described (Moorjani et al. 1987). Plasma total lipids were calculated using the 

summation method: total lipids = 1.677 (TC-FC) + FC + TG + PL. 
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Thyroid hormone determination 

Thyroid hormones (TSH, total T3 (TT3), and free T4 (fT4)) were analyzed by radioimmunoassay 

at the Clinical Biochemistry Service of Saint-François d’Assise hospital (Quebec city, Canada) 

(Forest et al. 1998). 

 

Statistical analysis 

All statistical analyses were performed using SAS version 8.12 (SAS Institute Inc. 1999). The log 

normally distributed data were log-transformed in order to use parametric tests. The STEPWISE 

procedure was used to test relationships between variables of interest and potential co-factors 

such as maternal age, smoking and alcohol consumption, child’s gender and birth weight (for 

cord blood variables), gestational age at sampling, and total lipid concentrations. The relation 

between exposure variables and effect variables was examined by longitudinal repeated measure 

analysis (MIXED procedure) considering the within-subject effect and compound symmetry 

covariance structure. Relationships between cord blood exposure and effect variables were tested 

using ANCOVA (GLM procedure). Because a large number of samples with contaminant levels 

were below the detection limit, the cord blood exposure levels were coded in two levels: 

detected/undetected for selected congeners, and above/below median for summed variables. The 

CB-101 and CB-128 as well as trans-chlordane, cis-chlordane, and aldrin were excluded from 

statistical analysis because 100% were undetected values. 

 

TH are involved in lipid metabolism and the reduction in their circulating level in hypothyroid 

subjects is associated with an atherogenic lipid profile (Al Tonsi et al. 2004). Therefore, in order 
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to take into consideration the effects of TH on blood lipid mobilisation, both, adjusted and 

unadjusted for lipid concentration analyses were performed. Two kinds of physiological 

sequences are possible in the tested relationship between lipophilic contaminants such as PCBs or 

pesticides, and TH: first, the hypothesized,relation “ ↑ lipids  ↑ blood PCBs  ↓ thyroid 

hormone levels”, and second, an inverse relation “ ↓ TH  ↑ lipids  ↑ blood PCBs”. The 

comparison of two, adjusted and not adjusted for lipids, models can indicate whether lipids are a 

confounding factor in a hypothesized relation or an intermediate factor in the inverse link. The 

lipid concentration variables were introduced in linear models as fixed variables. The criterion for 

significance was set at p<0.05. 

 

In order to demonstrate the cumulative effect of studied pollutants, two groups of subjects 

following the degree of their exposure to 5 OCs significantly related to hormone levels, PCB 138, 

153, 180, pp’-DDE, ß-BHC and hexa-chlorobenzene, were defined. The “exposed” group 

includes women who have two or more pollutants higher than 75th percentile of distribution, “not 

exposed” group includes those with none or only one pollutant higher than 75th percentile. 
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RESULTS 

Population characteristics 

The women who gave birth (n=101) were aged of 27 years (range 15 – 39); 30% of women 

smoked during pregnancy and 8% consumed alcohol moderately (0.5-2 drink/week, 4-30g 

alcohol/week). During pregnancy, 11 women (10%) had gestational diabetes, 2 of those with 

pregnancy induced hypertension; 11 women had pregnancy induced hypertension without 

gestational diabetes, 2 of those with proteinuria. Five percent of births occurred before 37 weeks 

of pregnancy, the average of birth weight was 3.3 kg (range 1.9 – 5.0 kg), and 51 % of newborns 

were boys. The characteristics of women lost to follow up (n=48) were not significantly different 

from those given birth at participating maternity.  

 

Hormone and contaminant levels during pregnancy and at birth 

The TH concentrations are given in Table 1, while Table 2 and 3 present the blood PCB congener 

and pesticide levels. We observed that TT3 and TSH levels increased during pregnancy, whereas 

fT4 levels decreased. TH levels in this pregnant women population are similar to reported data 

(de Escobar et al. 2004). The cord blood PCB concentrations were significantly lower than 

maternal blood, and, in most of samples, lower than detection limit level.  

 

In general, unadjusted blood PCB congener concentrations appeared to increase during 

pregnancy. However, when adjusted for the increase of lipid mobilization during pregnancy, 

concentrations were similar throughout. In women with gestational diabetes, unadjusted PCB 

levels were significantly higher at delivery than in non diabetic women, but when adjusted for 

lipid levels, they were similar.  
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Exposure and hormonal status 

Co-factors related to retained variables 

The relationships between variables of interest (maternal and cord blood TSH, TT3, fT4 levels, 

PCBs, pesticides, and mercury concentrations) were tested with respect to the following co-

factors: maternal age, gestational age at sampling, cigarette smoking, alcohol use, birth weight, 

newborn gender, and plasma total lipid contents. Maternal age, gestational age at sampling, 

plasma total lipid content and cigarette smoking during pregnancy, were related to most maternal 

biochemical measures (data not shown) and were added in final mixed models. For cord blood 

measures, total lipid levels, maternal age, birth weight, gestational age at birth and cigarette 

smoking during pregnancy were associated with cord blood hormone levels and exposure 

variables.  

 

Relationships between plasma PCBs, pesticides, and mercury concentrations and thyroid 

hormones levels in pregnant women 

Table 4 presents the results from mixed models including TSH, fT4, and TT3 levels during 

pregnancy in relation to plasma PCB concentrations. In both, adjusted and not adjusted for lipids 

models, only TT3 levels were strongly negatively related to PCB concentrations, especially to 

non-coplanar congeners (CB-138, CB-153, and CB-180). No relation was observed with the sum 

of mono-ortho-coplanar congeners. The CB-180 was positively correlated to TSH levels, but not 

to fT4 levels. 

 

Concordant results were obtained when the correlation with plasma pesticides was examined. 

The hexa-chlorobenzene, cis-nanochlor, and p,p’-DDE concentrations were negatively related to 

TT3 levels in mothers in adjusted for lipids models. Blood IHg was also negatively related to 
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TT3 levels (Table 5). In addition, cis-nanochlor, when detected, was positively correlated to fT4 

levels. 

 

The Figure 1 illustrates the change of TT3 and fT4 levels during pregnancy by group of exposure 

to five pollutants which are significantly related to TT3 levels in previous analyses (CB-138, CB-

153, CB-180, p,p’-DDE, ß-BHC, and hexa-chlorobenzene). For the the women who had none or 

1 of these pollutants higher than 75th percentile of distribution TT3 levels significantly increased 

from second trimester to delivery whereas for the women from the “exposed” group, TT3 levels 

decreased. Moreover, this relationship was much more significant than those from women 

classified according OC higher than 75th percentile, separately (data not shown). 

 

Relationships between cord blood plasma PCBs, pesticides, and mercury concentrations and 

cord blood hormones levels 

In general, the PCB congeners and pesticide residues in cord plasma were not significantly 

related to cord blood TH (data not shown). The cord blood organic Hg was not significantly 

related to hormone levels. Only cord blood inorganic Hg was negatively related to FT4 level 

(adjusted mean 16.5 pmol/L in subjects with undetected inorganic Hg versus 15.5 pmol/L in 

those with detected values; partial Spearman r=-0.26, p=0.02). 
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DISCUSSION 

Our results demonstrate a significant negative relationship between circulating total TT3 levels in 

pregnant women at low environmental doses of CB-138, CB-153, CB-180, inorganic mercury 

and two pesticides, pp’-DDE and hexa-chlorobenzene. In addition, only cis-nanochlor, in women 

having detected values, was related to both, increased fT4 and decreased TT3, during pregnancy. 

No other significant relation was observed in regard to fT4 or TSH levels. No association was 

observed between cord blood organic pollutant concentrations and TH levels, except for the 

negative correlation between inorganic Hg and fT4 in cord blood serum. The results from the 

Dutch cohort study show a decrease in maternal T3, T4 in pregnancy and infant TSH levels in 

relation to TEQs (toxic equivalents) of milk PCB dioxin-like and non coplanar congeners 

(Koopman-Esseboom et al. 1994). The same authors note that higher levels of maternal and cord 

blood plasma CB-118, CB-138, CB-153 and CB-180 congeners correlated significantly with 

higher plasma TSH levels in the infant, in the 2nd week after birth. Higher levels of 3 non 

coplanar congeners (CB-137, CB-138, and CB-153) in human milk also correlated significantly 

with higher TSH levels in umbilical blood plasma. In another study, which explored cord for 

blood TSH in relation to the same congeners (CB-118, CB-138, CB-153, CB-180), no relation 

between PCBs and TSH was found (Ribas-Fito et al. 2003), but other TH (T3, T4) were not 

measured. In the Steuerwald et al. (2000) study on the effects of exposure to methyl mercury on 

thyroid function at birth, no relation was found with mercury (Hg) levels, but cord blood resin-T3 

uptake levels were negatively correlated to the sum of 3 non coplanar PCB congeners (CB-138, 

CB-153, and CB-180) in maternal blood sample. The lowering of resin-T3 uptake is one of 

indicators of primary or secondary hypothyroidism. Thus, thyroid binding globulin (TBG) levels 

rose in cord blood with increased maternal PCB exposure. 
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The lack of relationship in regard to cord blood TH in our study could be related to other 

biological factors such as iodine and selenium intake or circadian variation (Andersen et al. 2003; 

Beckett et al. 2005), which are likely to influence endogenous hormone homeostasis, as well as to 

the very low level of exposure in fetal tissues. Exposure levels to PCB congeners in this 

population were 3-45 times lower than in previous reported studies reviewed by Longnecker et 

al. (2003). In addition, fetal TGG and other binding proteins are low (Hume et al. 2004), that 

could preserve the fetus from toxic effects of chemicals which act on TH binding. Also, thyroid 

status can be disrupted by other factors, unmeasured in the present study, including 

environmental pollutants such as pentachlorophenol (PCP) or HO-PCBs, which are metabolites 

of hexa-chlorobenzene and PCBs, respectively, as was previously reported in another Quebec 

populations (Sandau et al. 2002). These authors reported negative correlations between cord 

plasma free T3 and T4, as well as TBG, with sum of PCP and HO-PCBs, but not with PCB 

congeners individually or the sum of PCBs. Curiously, the concentrations of PCBs and HO-PCBs 

were also negatively correlated to TSH in cord plasma. Although these correlations were highly 

significant, they were obtained from small sample of newborns (n=20) without any adjustment 

for confounding variables. 

 

Similar to the present results, the selective effect of PCBs on T3 levels has been reported in fish 

eating women group (n=32), in which PCB 153 concentration was negatively related to TT3 

levels (Hagmar et al. 2001). Osius et al.’s (1999) study of schoolchildren showed that PCB 138, 

153 and 180 were negatively related to free T3 levels without any significant change in TSH or 

T4 concentrations; this relationship was significant only in girls. To our knowledge, these are the 

only two studies which have demonstrated a more pronounced effect on T3 than on T4 thyroid 

hormone. However, in physiological and pathological conditions the isolated reduction of T3 
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levels is rarely observed because there are effective compensatory mechanisms via T4 

production. 

 

The results of the present study indicate that blood lipid content is not a major confounding factor 

for the relationship between TH and OCs. Both, adjusted and unadjusted for lipids models 

revealed the same degree of significance for OCs exposure. Thus, the rise of lipids following the 

TH decrease is unlikely to be an intermediate factor of the observed relationships. 

 

Although epidemiological studies can not explore precise mechanisms of observed statistical 

relationships, some mechanistic hypotheses can be proposed. The deodination mechanism could 

be hypothesized to explain observed decrease in T3 levels in relation to exposure to OCs and Hg. 

As reviewed by Bianco et al. (2002), the T3 degradation by 3 type deiodinase (D3) which 

catalyzes the inner ring deiodination of T4 to reverse T3 (rT3) and of T3 to 3,3'-T2, represents an 

important pathway for the inactivation of TH. D3 shows substrate preference for T3 over T4, and 

is expressed at high levels in human placenta tissue (Huang et al. 2003). The overexpression of 

D3 called “consumptive hypothyroidism” and reported in infantile hemangiomas, is characterized 

by undetectable serum T4, and T3, and high rT3 levels. Our results could be related to direct or 

indirect induction of D3 activity or its increased expression, but we did not assess the free T3 or 

rT3 levels to confirm this hypothesis. This needs further experimental research at low levels of 

OCs exposure. In addition, an increase in placenta D3 activity in methyl Hg exposed mice, has 

been reported (Watanabe et al. 1999). Interestingly, the brain D3 activity was depressed in the 

fetuses from exposed dams. In our study, it is difficult however to explain the lack of association 

with cord serum T3 knowing that placenta D3 participates in fetal T3 degradation in humans 

(Santini et al. 1999). 
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Other types of deiodinases present in different tissues can contribute to T4 and T3 deiodination. 

In humans, 80% of circulating T3, the physiologically active form of thyroid hormone, is 

generated from peripheral deiodination of T4 by enzymatic action of 5’-monodeiodinase and 

20% is derived from thyroidal secretion (Pilo et al. 1990). There are two types of 5’-

monodeiodinase enzyme: the D1 is located at the plasma membrane and the D2 is associated with 

endoplasm reticulum. The T3 generated by D1 does not have direct access to nuclei but instead 

must first be exported into the plasma. Both D1 and D2 deiodinases contribute to plasma T3 

content. The substrates for these enzymes are rT3 and T3 sulfate for D1, and T4 and rT3 for D2 

(Bianco et al. 2002). However, serum T3 concentration remains normal in D1 or D2 deficient 

mice (Maia et al. 1995). 

 

Several studies have explored the effect of OCs on D1 and D2 deiodinase activity. One study 

reported the depression of liver D1 activity in response to Arochlor 1242 and 1254 treatment in 

the chick embryo (Gould et al. 1999). Wade et al. (2002) examined the effect of subchronic 

exposure to complex mixture of persistent contaminants (16 OCs, lead and cadmium) on thyroid 

hormones in male rats and reported increased TSH level at the lowest level of exposure without 

any changes of T4 or T3. Moreover, the authors observed significant reduction in hepatic D1 

activity and speculated that TSH increase could be related to pituitary D2 depression. There is a 

need for further investigations to explore the role of deiodinases in toxicity of environmental 

pollutants, such as PCBs and pesticides, in human.  

 

In addition to deiodination, thyroid hormone is also importantly metabolized by conjugation of 

the phenolic hydroxyl group with glucuronic acid or sulfate (Leonard and Köhrle 1996). This 
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mechanism is also involved in OCs toxicity. For example, hexa-chlorobenzene was shown to 

decrease of total and free T4 levels in rats, without significant effect on T3 (Kleiman de Pisarev 

et al. 1990). It was shown that hexa-chlorobenzene decrease kidney and brown adipose tissue D1 

activity after 15-21 days of exposure, but total body D1 activity was significantly increased. In 

addition, hexa-chlorobenzene increase the activity of hepatic T4 uridine diphosphoglucuronosyl 

transferase (UDPGT) in a time-dependent manner, without changes in T3-UDPGT (Alvarez et al. 

2005). The same mechanism on T4-UDPGT was proposed to explain the decrease in T4 

following PCB exposure (Barter and Klaassen 1994). We did not observe, however, any negative 

association between free T4 and OCs. Thus, we cannot consider an effect on the enzyme 

responsible for TH conjugation as a possible explanation of these results. We observed, however, 

a negative relationship between free T4 in cord blood serum and inorganic Hg. If this relationship 

was not due to chance, it may be related to inducing properties of inorganic Hg on UDPGT in 

renal tissue reported in mice (Tan et al. 1990). Moreover, workplace exposure to inorganic Hg 

was reported to be associated with increases in T4, rT3, and the T4/T3 ratio (Ellingsen et al. 

2000) suggesting an inhibitory effect of Hg on deiodinase activity. In our study, inorganic Hg 

was associated with a decrease in maternal total T3 during pregnancy that could be due to effect 

of Hg on deiodinase activity. However, since the free T4 levels were not changed and free T3 

was not determined, this explanation remains speculative. 

 

Binding to TBG and/or to transthyretin, two major TH transporters in blood could be proposed as 

an alternative hypothesis to explain the observed negative relationship between OCs and total T3 

levels during pregnancy. PCBs, especially non coplanar congeners, bear a structural resemblance 

to the endogenous thyroid hormones and have high affinity with thyroid hormone-binding 

proteins such as transthyretin (Chauhan et al. 2000). Also, hydroxylated PCB metabolites bound 
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to transthyretin with affinities similar to that of T4, but they have low affinity to TBG (Cheek et 

al. 1999). Alteration of thyroid hormone-binding capacity in serum is associated with variations 

in total thyroid hormone concentration. Diminished serum thyroid hormone values are observed 

in subjects with TBG deficiency. However, decreased concentration or affinity of transthyretin is 

not associated with variations in serum concentrations of thyroid hormones (Bartalena and 

Robbins 1992). Few data are available about affinities of PCBs and pesticides to bind to TBG. 

 

There are substantial and important differences between humans and animals with respect to 

structural characteristics of deidinase enzyme and thyroid economy. In both, rodents and human, 

deiodinases are selenocysteine-containing proteins and the presence of selenocysteine in the 

protein is critical for enzyme activity. However, the carboxy-terminal of D1 from rat liver was 

different from that of other species (Santini et al. 1992). Also, the rat has a much larger 

contribution of T3 secreted directly from the thyroid gland than in humans. It has been estimated 

that only approximately 20% of plasma T3 in humans comes from thyroidal secretion, as 

opposed to about 40% in rats. It has also been estimated that D1 catalyzes about half of the daily 

extrathyroidal T3 production from T4 in the rat versus an estimate of 25% in human (Bianco et 

al. 2002). There is also heterogeneity in the transport of thyroid hormones between species. In 

humans, TH are primarily bound to TBG. The remainder is bound to less specific proteins, such 

as albumin and transthyretin. These three proteins transport more than 95% of TH (Barlow 1997; 

Bartalena and Robbins 1992). In growing rats, a significant difference is that TBG is not found 

between 2 and 7 months, the age range typically used in basic toxicology studies (Vranckx et al. 

1994). In adult rats, TH are bound to the low affinity carriers albumin and transthyretin. As a 

consequence, the half-life of thyroid hormones in adult rats is shorter than in humans (Mc Clain 

1995). These various interspecies differences imply a different predisposition of rats compared to 
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humans to perturbations of thyroid homeostasis by chemicals that influence thyroid status (Lans 

et al. 1994). 

 

One of limitations of our study is the measure of total T3 and free T4 without free T3 and total 

T4 levels. The TT3 does not include rT3 and T3 sulfate levels which could help us to confirm the 

hypothesis that PCB, pesticide and mercury affect T4 or T3 deionization. Also, we are unable to 

show if the observed relationship is related to free T3 decrease or to T3 fraction binding to TBG. 

Moreover, it is difficult to distinguish the proper effect of each OC on TH due to their high 

collinearity (correlations between OC more than 0.60). However, their cumulative or synergistic 

effects can not be excluded considering the most important decrease of TT3 when it is correlated 

with more than one OC.  

 

Thyroid status is frequently assessed during pregnancy, but limited routinely to measurements of 

TSH. Little data exists about the role of physiological changes in thyroid status in pregnant 

women and the effect of subtle T3 and T4 variations on women’s health. One study suggests that 

low free T3 levels are associated with postpartum depression syndrome (Ijuin et al. 1998), but 

further investigations are needed to evaluate the long term consequences of subtle thyroid 

changes related to environmental exposure to persistent organic contaminants. In conclusion, the 

potential of to low dose exposure to OC mixtures to interfere with hormonal status during 

pregnancy warrants further investigations with complete assessment of thyroid status to confirm 

our results and to determine the short and long term consequences of these disturbances. 
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Table 1. Blood levels of hormones during pregnancy and at birth. 

First trimester (n=40) Second trimester (n=147a) At delivery (n=100) Cord blood (n=92)  

median 5th-95th percentiles median 5th-95th percentiles median 5th-95th percentiles median 5th-95th percentiles 

TSH, mIU/L 2.1 0.09 – 9.55 2.2 0.62 – 5.5 2.6 0.8 – 7.53 9.8 3.4 – 30.4 

Free T4, pmol/L 14.3 11.5 – 18.7 12.8 10.2 – 15.8 11.6 8.7 – 15.05 16.1 12.8 – 19.6 

Total T3, nmol/L 2.7 1.97 – 3.6 3.2 2.3 – 4.2 3.3 2.4 – 4.5 1.3 0.9 – 1.9 

a in women which were sampled two time in second trimester only the second sample is included in this column 

mIU=milliInternational Unit 
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Table 2  Concentrations of plasma PCB congener, µg/L. 

Median and 5th-95th centiles or % of samples over detection limit value  

Congener 
I trimester (n=39) II trimester (n=145) At delivery (n=101) Cord blood (n=92) 

CB28 10% 28% 21% 2% 

CB52 0% 2% 4% 1% 

CB99 0.02 [nd-0.05] 0.02 [nd -0.05] 0.02 [nd -0.06] 6% 

CB101 0% 0% 0% 0% 

CB105 3% 12% 23% 8% 

CB118 0.02 [nd -0.08] 0.03 [nd -0.08] 0.03 [nd -0.10] 33% 

CB128 0% 0% 0% 0% 

CB138 0.06 [0.02-0.18] 0.07 [0.03-0.20] 0.08 [0.03-0.25] 0.02 [nd -0.06] 

CB153 0.07 [0.03-0.26] 0.08 [0.03-0.27] 0.09 [0.04-0.30] 0.02 [nd -0.08] 

CB156 0.02 [nd -0.05] 0.02 [nd -0.05] 0.02 [nd -0.07] 37% 

CB170 0.01 [nd -0.07] 0.02 [nd -0.07] 0.02 [nd -0.07] 7% 

CB180 0.04 [0.02-0.14] 0.05 [0.02-0.17] 0.05 [0.02-0.19] 0.01 [nd -0.05] 

CB183 8% 15% 27% 1% 

CB187 0.02 [nd -0.06] 0.02 [nd -0.05] 0.02 [nd -0.06] 14% 

Σ mono-ortho-coplanars 

(105, 118, 156) 

0.06 [nd-0.14] 0.06 [nd-0.15] 0.07 [0.04-0.18] 0.04 [nd-0.07] 

Σ PCB 0.33 [0.16-1.31] 0.35 [0.18-1.05] 0.39 [0.20-1.22] 0.16 [nd-0.35] 
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Table 3 Blood mercury and plasma pesticides concentrations (µg/L). 

 

Median and 5th-95th centiles or % of samples over detection limit value  

I trimester (n=39) II trimester (n=145) At delivery (n=101) Cord blood (n=92) 

Total Hg 0.80 [0.40 – 2.20] 0.60 [nd – 2.0] 0.60 [nd – 1.2] 0.60 [nd – 1.6] 

Organic Hg 0.40 [nd – 1.40] 0.20 [nd-1.20] 0.20 [nd-0.80] 0.30 [nd-1.30] 

Trans-nanochlor 0.03 [nd -0.09] 0.04 [0.02-0.10] 0.05 [nd -0.15] 14% 

Oxy-chlordane 0.02 [nd -0.06] 0.03 [0.02-0.07] 0.03 [0.02-0.08] 10% 

Mirex 19% 15% 20% 1% 

Hexa-chlorobenzene 0.04 [0.03-0.10] 0.06 [0.03-0.11] 0.06 [0.04-0.12] 0.02 [0.01-0.05] 

DDT 0.01 [nd -0.04] 0.03 [nd -0.05] 0.04 [nd -0.07] 11% 

pp’-DDE 0.38 [0.16-0.90] 0.43 [0.22-0.97] 0.47 [0.20-1.20] 0.16 [0.08-0.40] 

Cis-nanochlor 0% 1% 20% 0% 

Trans-chlordane 0% 0% 0% 0% 

Cis-chlordane 0% 0% 0% 0% 

ß-BHC 0.03 [nd -0.05] 0.04 [nd -0.08] 0.05 [nd -0.09] 1% 

Aldrin 0% 0% 0% 0% 
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 Table 4 Hormone levels and PCBs concentrations during pregnancy 

TSH, mIU/L Free T4, pmol/L Total T3, nmol/L  
Unadjusted Adjusteda Unadjusted Adjusteda Unadjusted Adjusteda 

ΣPCB, µg/L 
estimate 

DF 
Type 3 F value 

 
0.65 
151 
0.50 

 
0.45 
148 
0.21 

 
-0.08 
151 
0.05 

 
0.49 
148 
1.6 

 
-0.37 
151 
6.4* 

 
-0.47 
148 

9.6** 
Σmono-ortho-coplanars 
(CB105, CB118, CB156), µg/L 

estimate 
DF 

Type 3 F value 

 
 

3.0 
151 
0.13 

 
 

0.46 
148 
0.0 

 
 

-2.6 
151 
0.60 

 
 

2.7 
148 
0.62 

 
 

-1.3 
151 
0.98 

 
 

-2.1 
148 
2.27 

CB138, µg/L 
estimate 

DF 
Type 3 F value 

 
0.90 
151 
0.03 

 
-0.55 
148 
0.01 

 
-0.48 
151 
0.05 

 
3.1 
148 
2.1 

 
-2.1 
151 

7.2** 

 
-2.8 
148 

11.2** 
CB153, µg/L 

estimate 
DF 

Type 3 F value 

 
-0.18 
151 
0.0 

 
-0.93 
148 
0.08 

 
0.57 
151 
0.19 

 
2.5 
148 
3.6 

 
-1.2 
151 
5.9* 

 
-1.5 
148 

8.6** 
CB180, µg/L 

estimate 
DF 

Type 3 F value 

 
7.8 
151 
5.3* 

 
7.5 
148 
4.6* 

 
-1.4 
151 
1.1 

 
-0.27 
148 
0.04 

 
-1.2 
151 
6.0* 

 
-1.4 
148 

7.7** 
aAdjustment for total lipid concentrations 
Mixed model parameters for repeated measures adjusted for gestational age at sampling, maternal age, and cigarette smoking during 
pregnancy 
* p<0.05; ** p<0.01 
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Table 5. Hormone levels, mercury and pesticides concentrations during pregnancy 
TSH, mIU/L Free T4, pmol/L Total T3, nmol/L  

Unadjusted Adjusteda Unadjusted Adjusteda Unadjusted Adjusteda 
Organic Hg, µg/L 

estimate 
Type 3 F value 

 
0.58 
0.50 

  
-0.18 
0.34 

  
0.05 
0.18 

 

Inorganic Hg, µg/L 
estimate 

Type 3 F value 

 
-0.41 
0.28 

  
-0.26 
0.57 

  
-0.27 
4.20* 

 

Trans-nanochlor, µg/L 
estimate 

Type 3 F value 

 
-0.66 
0.01 

 
-1.9 
0.09 

 
-5.3 
3.80 

 
-1.65 
0.40 

 
-0.50 
0.20 

 
-0.91 
0.80 

Oxy-chlordane, µg/L 
estimate 

Type 3 F value 

 
10.3 
0.46 

 
4.6 

0.08 

 
-7.8 
1.53 

 
3.9 

0.37 

 
-4.1 
2.96 

 
-4.6 
3.15 

Mirex, detected vs 
undetected value 

estimate 
Type 3 F value 

 
 

0.09 
0.01 

 
 

0.03 
0.0 

 
 

-0.11 
0.14 

 
 

0.13 
0.19 

 
 

0.07 
0.36 

 
 

0.08 
0.41 

Hexa-chlorobenzene, µg/L 
estimate 

Type 3 F value 

 
-5.4 
0.20 

 
-11.0 
0.82 

 
-2.3 
0.20 

 
8.1 

2.91 

 
-3.4 
3.83 

 
-5.2 

7.51** 
aAdjustment for total lipid concentrations 

Mixed model parameters for repeated measures adjusted for gestational age at sampling, maternal age, and cigarette smoking during 
pregnancy (df=151 for unadjusted and df=148 for adjusted analyses) 

* p<0.05; ** p<0.01 
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Table 5. Hormone levels, mercury and pesticides concentrations during pregnancy – cont’d 
 

DDT, µg/L 
estimate 

Type 3 F value 

 
-8.5 
0.3 

 
-14.2 
0.8 

 
-0.89 
0.02 

 
9.9 
2.8 

 
1.39 
0.4 

 
0.26 
0.01 

pp’-DDE, µg/L 
estimate 

Type 3 F value 

 
0.25 
0.04 

 
-0.06 
0.0 

 
-0.75 
2.0 

 
0.09 
0.03 

 
-0.37 
3.3 

 
-0.54 
6.1* 

Cis-nanochlor, detected vs 
undetected value 

estimate 
Type 3 F value 

 
 

0.67 
0.36 

 
 

0.41 
0.13 

 
 

0.33 
0.73 

 
 

0.74 
3.92 

 
 

-0.34 
5.33* 

 
 

-0.35 
5.40* 

ß-BHC, µg/L 
estimate 

Type 3 F value 

 
-2.1 
0.04 

 
-5.4 
0.2 

 
2.3 
0.3 

 
8.8 

4.2* 

 
-2.4 
2.0 

 
-3.4 
3.8 

aAdjustment for total lipid concentrations 
Mixed model parameters for repeated measures adjusted for gestational age at sampling, maternal age, and cigarette smoking during 
pregnancy (df=151 for unadjusted and df=148 for adjusted analyses) 
* p<0.05; ** p<0.01 
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Figure 1. Change in TT3 (black) and fT4 (grey) levels between second trimester and delivery in 

pregnant women by group of exposure 

 

 
 
 


